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Abstract

We present a numerical method to solve a fluid–solid interaction problem posed in the plane. In this scheme, we use

a finite element method to approximate the solid vibrations and the near wave field. The far field effects are taken into

account by means of boundary integral equations posed on an artificial interface that contains the obstacle. The

boundary unknown involved in our formulation is approximated by a spectral method. We obtain a fully discrete

Galerkin procedure whose main advantage is the simplicity of the quadratures used to approximate the weakly singular

boundary integrals. We provide numerical results that illustrate the accuracy of our method and the stability of the

algorithm used to solve the linear systems of equations that arise from this discretization technique.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We consider a bounded elastic body (the obstacle) embedded in an unbounded compressible inviscid

fluid (the acoustic medium). Any acoustic wave incident on the obstacle transmits part of its energy in the

form of elastic vibrations. At the same time, the elastic vibrations of the solid cause acoustic waves in the

fluid. In this paper, we introduce a numerical scheme to compute the scattered waves and the elastic

vibrations that take place in this interaction between the fluid and the solid.
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The numerical difficulties related to the fact that the scattered wave propagates in an unbounded region

is overcomed by imposing absorbing boundary conditions on an artificial boundary containing the obstacle.

This permits one to incorporate the far-field effects into a finite element discretization of the problem in a
bounded region. The absorbing boundary conditions may be of local (differential) or global type; we refer

to [3,5] for a review of such methods.

In this paper, we use linear integral equations as nonlocal boundary conditions on the artificial interface.

This strategy gives rise to numerical schemes based on a combination of a finite element method (FEM) and

a boundary element method (BEM). Here, we follow [4] and propose the so-called symmetric BEM–FEM

formulation due to Costabel [2] to solve the fluid–solid interaction problem. We point out that Bielak and

MacCamy propose in [1] a BEM–FEM method that also leads to a symmetric formulation and that avoids

the use of the hypersingular integral operator, which is the integral operator whose kernel has the most
severe singularity. In [1,4], the interface that separates the two mediums (the wet interface) is used as a

coupling boundary. In this case, the well-posedness of the resulting formulation (at the continuous level)

requires regularity assumptions that may not be fulfilled in practice by the wet interface. Here, we impose

the absorbing boundary conditions on a smooth but arbitrary interface that contains the obstacle in its

interior. This enlarges a little the domain of finite element computations but this drawback is compensated

by the fact that we remove the limitation to problems with smooth wet boundaries.

The presence of integrals with nearly singular integrands augurs that the matrix assembly process is a

delicate operation in all the BEM–FEM coupling procedures. The design of efficient algorithms for this task
is of great importance in order to improve the practicability of these methods. Another handicap related to

this kind of approximation methods concerns the complicated linear systems of equations to which they

lead. The corresponding matrices are general (symmetric in the case of symmetric BEM–FEM formulations)

and their sparsity is reduced by the coupling procedure. Neither of these two difficulties are addressed in

[1,4]. Here, we will show how to take advantage of the techniques developed in [9–14] in order to handle these

drawbacks in the case of a two-dimensional BEM–FEM formulation of a solid–fluid interaction problem.

Recently, the classical BEM–FEM formulations have been rewritten (see [9–14]) by changing all terms

on the interface to periodic functions by means of a smooth parameterization of the artificial boundary.
These new formulations allow one to approximate the weakly singular boundary integrals by elementary

quadrature formulas. Furthermore, as shown in [13], they permit one to approximate the periodic repre-

sentation of the unknown defined on the boundary by trigonometric polynomials.

The advantage of such a hybrid scheme that combines a finite element method with a spectral method is

that few degrees of freedom are needed on the interface boundary as we confirm by our numerical ex-

periments. This permits one to eliminate the periodic unknown at matricial level by a static condensation

process and reduce in the way the complexity of the linear systems. Here we use a preconditioned GMRES

method to solve the reduced linear system of equations whose matrices are complex symmetric but not
definite. The resulting iterative method only requires the solution of standard (interior) elliptic finite ele-

ment problems. It also allows one to avoid storing the huge global matrix. Our numerical experiments

reveal that the number of iterations of the algorithm does not increase with the number of unknowns.

The paper is organized as follows. In Section 2 we give a more detailed description of the physical as-

sumptions and we set up the governing equations. We derive in Section 3 a variational formulation of the

problem by using integral equations as nonlocal boundary conditions on a smooth artificial interface. We

also state a theorem on the uniqueness of solution of the resulting problem. In Sections 4 and 5, we in-

troduce a discrete problem and provide numerical quadratures that permits one to write a full discretization
of the equations. Finally, in Section 6, we present our numerical results together with the iterative method

used to solve the systems of linear equations.

In the sequel, we deal with complex valued functions and the symbol ı is used for
ffiffiffiffiffiffiffi
�1

p
. We denote by a

the conjugate of a complex number a 2 C and by jaj its modulus. Small boldface letters will denote vectors

or vector valued functions.
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2. Physical assumptions and governing equations

We are concerned with the interaction between an elastic body and a fluid that fills the space around it.
We suppose that a wave is incident upon the body and we are required to determine its response and the

scattered wave.

We assume that the obstacle is an infinitely long cylinder parallel to the x3-axis whose cross-section is Xs.

We denote by R the boundary of Xs. The incident acoustic wave and the volume force acting on the obstacle

are suppose to exhibit a time-harmonic behavior with frequency x. We will denote their amplitudes

w ¼ wðx1; x2Þ and f ¼ fðx1; x2Þ, respectively. The incident wave is generally taken to satisfy the Helmholtz

equation Dwþ k2w ¼ 0 in Xf :¼ R2 n Xs.

The phenomenon is invariant under a translation in the x3-direction. Then, we may consider a bidi-
mensional model posed in the frequency domain. The unknowns of the problem are the amplitude

u : Xs ! C2 of the solid displacements field and the amplitude p : Xf ! C of the scattered pressure.

We suppose that the solid is isotropic and linearly elastic, with mass density qs and Lam�e moduli k, l.
We denote as usual the stress tensor by rðuÞ :¼ ktr eðuÞI þ 2leðuÞ, where eijðuÞ :¼ 1

2
ðoui
oxj

þ ouj
oxi
Þ is the infini-

tesimal strain tensor. Furthermore, we assume that the fluid is ideal, compressible and homogeneous with

mass density qf and wave number k ¼ x
c where c is the speed of sound in the linearized fluid.

Let us denote by n the unit normal on R directed into Xf . Under the hypothesis of small oscillations both

in the solid and the fluid, u and p are found out to satisfy the equations
r � rðuÞ þ qsx
2u ¼ �f in Xs;

Dp þ k2p ¼ 0 in Xf ;

rðuÞn ¼ �ðp þ wÞn on R;

qfx
2u � n ¼ oðp þ wÞ

on
on R

ð1Þ
and the decay conditions
p ¼ Oðr�1=2Þ; op
or

� ıkp ¼ oðr�1=2Þ ð2Þ
when r ! þ1 uniformly for all directions x
jxj.

The first two equations of (1) are, respectively, the elastodynamic and acoustic equations in time-har-

monic regime. The transmission conditions posed on R represent the equilibrium of forces (dynamic

boundary condition) and the equality of the normal displacements of solid and fluid (kinematic boundary

condition). Finally, Eq. (2) means that the far field absorbs the outgoing waves (cf. [5] for more details).

It is known that if f ¼ 0 and w ¼ 0 then p ¼ 0 and u is solution of (see [7])

r � rðuÞ þ qsx
2u ¼ 0 in Xs;

rðuÞn ¼ 0 on R;

u � n ¼ 0 on R:

ð3Þ
It turns out that for certain regions and some frequencies qsx
2, known as Jones frequencies, problem (3)

have nontrivial solutions. This seems to be a rare eventuality but we will, in any case, assume that (3) admits

only the trivial solution.
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3. A variational formulation with nonlocal boundary conditions

Let us introduce an artificial boundary C such that Xs lays in its interior. Then, C separates R2 into a
bounded domain X� and an unbounded region Xþ

f exterior to C. We denote X�
f :¼ Xf \ X�. Notice that

X� ¼ Xs [ X�
f ; cf. Fig. 1.

We consider the sesquilinear forms

Aðu; vÞ :¼
Z
Xs

ðrðuÞ : eðvÞ � qsx
2u � vÞ dx;
aðp; qÞ :¼ 1

qfx2

Z
X�
f

ðrp � rq� k2pqÞ dx and Dðv; qÞ :¼
Z
R
v � nq ds:

It is straightforward to show that in Xs u satisfies the variational formulation

find u 2 ðH 1ðXsÞÞ2 such that Aðu; vÞ þ Dðv; pÞ ¼ LðvÞ 8v 2 ðH 1ðXsÞÞ2; ð4Þ

where

LðvÞ :¼
Z
Xs

f � v dx� Dðv;wÞ

while pjX�
f
is a solution of

find p 2 H 1ðX�
f Þ such that aðp; qÞ þ Dðu; qÞ � 1

qfx2

Z
C

op
om

q ds ¼ ‘ðqÞ 8q 2 H 1ðX�
f Þ: ð5Þ

Here, the unit normal m on C is directed into Xþ
f and

‘ðqÞ :¼ 1

qfx2

Z
R

ow
on

q ds:

On the other hand, using a Green formula, the radiation conditions (2) and the fact that p solves the

Helmhotz equation in Xþ
f , one arrives at the following integral representation:

pðxÞ ¼
Z
C

oEðx; yÞ
omy

pðyÞ dsy �
Z
C
Eðx; yÞ op

om
ðyÞ dsy 8x 2 Xþ

f ; ð6Þ

where

Eðx; yÞ :¼ ı

4
H ð1Þ

0 ðkjx� yjÞ
Fig. 1. Geometry of the problem.
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is the radial outgoing fundamental solution of the Helmholtz equation and H ð1Þ
0 stands for the Hankel

function of order 0 and first kind. The symmetric BEM–FEM method introduced in [2] uses two boundary

integral identities relating on C the trace of p and its normal derivative op
om
. These boundary integral

equations arise from the integral representation formula (6) and the jump conditions of the layer potentials.

Our purpose is to perform the coupling of these boundary equations with (4) and (5), but let us first in-

troduce some notations and basic properties.

In the sequel, we choose C to be an infinitely differentiable boundary and we denote by x : R ! R2 a

regular 2p-periodic parametric representation of this curve

jx0ðsÞj > 0 8s 2 R and xðsÞ ¼ xðtÞ () t � s 2 2pZ:

Therefore, we can identify any function q defined on C with the 2p-periodic function qsx. This parame-

terization of C also allows us to define the parameterized trace on C as the unique extension of

c : C1ðX�
f Þ ! L2ð0; 2pÞ;
q 7!cq :¼ qjCsx

to the whole of H 1ðX�
f Þ. Theorem 8.15 of [6] proves that c : H 1ðX�

f Þ ! H 1=2 is bounded and onto, where

H 1=2 is the completion of C1
2p with the norm

kgk1=2 :¼
X
n2Z

ð1
 

þ n2Þ1=2jbgðnÞj2!1=2

:

We denoted here by C1
2p the space of 2p-periodic and infinitely differentiable complex valued functions of a

single variable and

ĝðnÞ :¼ 1

2p

Z 2p

0

gðsÞe�ıns ds

are the Fourier coefficients of g 2 C1
2p. We will denote by H�1=2 the dual space of H 1=2. The L2ð0; 2pÞ-bilinear

form product
R 2p
0

kðsÞlðsÞ ds can be extended to represent the duality between H�1=2 and H 1=2. We will keep

the same notation for this duality bracket.

We introduce parameterized versions of the single and double layer acoustic potentials

SgðsÞ :¼
Z 2p

0

V ðs; tÞgðtÞ dt and DgðsÞ :¼
Z 2p

0

Kðs; tÞgðtÞ dt;

where

V ðs; tÞ :¼ ı

4
H ð1Þ

0 ðkjxðsÞ � xðtÞjÞ

and

Kðs; tÞ :¼ � kı
4
H ð1Þ

1 ðkjxðtÞ � xðsÞjÞ x
0
2ðtÞðx1ðtÞ � x1ðsÞÞ � x01ðtÞðx2ðtÞ � x2ðsÞÞ

jxðtÞ � xðsÞj ;

with H ð1Þ
1 being the Hankel function of first kind and order one.
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Let us introduce the auxiliary unknown n given in terms of the normal derivative of p on C by

n :¼ jx0j op
om

sx:

Parameterizing the integrals on C in the traditional symmetric BEM–FEM method (cf. [2]) yields to (a

similar strategy is used in [9,11,15])

cp ¼ 1

2
I

�
þD

�
cp �Sn;

n ¼ �Hcp þ 1

2
I

�
�D�

�
n;

ð7Þ

whereI is the identity operator,D� is the adjoint ofD andH is the hypersingular operator which is related

to the single layer operator via tangential derivatives, see [8]. With our notations this relation readsZ 2p

0

gðHwÞ dt ¼
Z 2p

0

g0ðSw0Þ dt � k2
Z 2p

0

gð ~SwÞdt 8w; g 2 H 1=2;

where ~S is the integral operator whose kernel is given by ~V ðt; sÞ :¼ x0ðtÞ � x0ðsÞV ðt; sÞ.
Combining (4) and (5) with (7) we arrive at the following global weak formulation of (1) and (2):

find u 2 ðH 1ðXsÞÞ2; p 2 H 1ðX�
f Þ and n 2 H�1

2 such that

Aðu; vÞ þ Dðv; pÞ ¼ LðvÞ;
aðp; qÞ þ Dðu; qÞ � bðcq; nÞ þ cððcpÞ0; ðcqÞ0Þ � k2dðcp; cqÞ ¼ ‘ðqÞ;
� bðcp; gÞ � cðn; gÞ ¼ 0

ð8Þ

for all v 2 ðH 1ðXsÞÞ2, q 2 H 1ðX�
f Þ and g 2 H�1

2. We have denoted

cðn; gÞ :¼ 1

qfx2

Z 2p

0

gðtÞðSnÞðtÞ dt and bðcp; gÞ :¼ 1

qfx2

Z 2p

0

gðtÞ 1

2
I

�
�D

�
ðcpÞðtÞ dt

and

dðcp; cqÞ :¼ 1

qfx2

Z 2p

0

cqðtÞð ~ScpÞðtÞ dt:
Theorem 1. Assume that problem (3) admits only the trivial solution and that k2 is not an eigenvalue of the

Laplacian in X with a Dirichlet boundary condition on C. Then, the solution of problem (8) is unique.

Proof 1. Let ðu0; p0; n0Þ be a solution of (8) with f ¼ 0 and w ¼ 0. We define the function

~pðxÞ :¼
p0ðxÞ if x 2 X�

f ;

zðxÞ if x 2 Xþ
f ;

�
where

zðxÞ :¼
Z 2p

0

oE
omy

ðx; xðtÞÞcp0ðtÞjx0ðtÞj dt �
Z 2p

0

Eðx; xðtÞÞn0ðtÞ dt:
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It is easy to show that u0, p0 and n0 solve the equations:

r � rðu0Þ þ qsx
2u0 ¼ 0 in Xs;

Dp0 þ k2p0 ¼ 0 in X�
f ;

rðu0Þn ¼ �ðp0 þ wÞn on R;

qfx
2u0 � n ¼ oðp0 þ wÞ

on
on R;

cp0 ¼
1

2
I

�
þD

�
cp0 �Sn0;

jx0ðtÞj op0
om

sx ¼ �Hcp0 þ
1

2
I

�
�D�

�
n0:

ð9Þ

On the other hand, z also solves the Helmholtz equation in Xþ
f

Dzþ k2z ¼ 0 in Xþ
f ð10Þ

and it satisfies the asymptotic conditions (2). Besides, the jump properties of the double layer potential and

the normal derivative of the single layer potential through C provides the relations (cf. [15]):

cz ¼ 1

2
I

�
þD

�
cp0 �Sn0;

jx0ðtÞj oz
om

sx ¼ �Hcp0 þ
1

2
I

�
�D�

�
n0:

ð11Þ

Combining (10), (11), and (2) with (9) proves that ðu0; ~pÞ is a solution of (1) with data f ¼ 0 and w ¼ 0.

Now, our assumption on problem (3) ensures that ðu0; ~pÞ vanishes identically and consequently

1

2
I

�
�D�

�
n0 ¼ 0:

Finally Theorem 3.3.4. of [15] proves that, under our hypothesis on k, operator 1
2
I�D� is one-to-one and

the result follows. �

Remark 1. Standard arguments permits one to show that problem (8) is a compact perturbation of a well-

posed problem. Thus, by virtue of the Fredholm alternative, Theorem 1 is in fact also an existence result.
4. Discrete problem

For simplicity of exposition, in the rest of the paper we assume that R is a polygonal boundary. Let N be a

given integer. We consider the equidistant subdivision fti :¼ ip=N ; i ¼ 0; . . . ; 2N � 1g of the interval ½0; 2p�
with 2N grid points. We denote by Xh the polygonal domain whose vertices lying on C are

fxðtiÞ : i ¼ 0; . . . ; 2N � 1g. Let fshgbe a regular family of triangulations ofXh by triangles T of diameter hT not
greater than max jx0ðsÞjh with h :¼ p=N . We assume that the restriction ssh :¼ fT 2 sh; T � Xsg of sh to Xs is a

triangulation and set sfh :¼ sh n ssh. Notice that X�
f ;h :¼ interiorð[T2sfh

T Þ is a polygonal approximation of X�
f .

We introduce the finite element spaces

V s
h :¼ fv 2 C0ðXsÞ; vjT 2 P1ðT Þ 8T 2 sshg

and
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V f
h :¼ fq 2 C0ðX�

f ;hÞ; qjT 2 P1ðT Þ 8T 2 sfhg;

where P1ðT Þ is the space of linear functions on T .
Let Ch be the exterior boundary of X�

f ;h. We follow [12] and define a discrete counterpart ch of the

parameterized trace operator c. This discrete linear operator will relate the space of traces

V f
h ðChÞ :¼ fqjCh

; q 2 V f
h g of functions in V f

h to the subspace Th � H 1=2 defined by the set of continuous, 2p-
periodic and piecewise linear functions on the uniform partition of ½0; 2p� into 2N grid points. It is clear

that

ch : V
f
h ðChÞ ! Th
qjCh
7!chq

is uniquely determined by the conditions chqðtiÞ :¼ qðxðtiÞÞ for i ¼ 0; . . . ; 2N � 1.
Let n be a given integer and consider the 2n-dimensional space

Tn :¼
Xn
j¼0

aj cos jt

(
þ
Xn�1

j¼1

bj sin jt; aj; bj 2 C

)
:

The discrete version of (8) is then given by

find uh 2 ðV s
h Þ

2
; ph 2 V f

h and nn 2 Tn such that

Aðuh; vÞ þ Dðv; phÞ ¼ LðvÞ;
aðph; qÞ þ Dðuh; qÞ � bðchq; nnÞ þ cððchphÞ

0
; ðchqÞ

0Þ � k2dðchph; chqÞ ¼ ‘ðqÞ;
� bðchph; gÞ � cðnn; gÞ ¼ 0

ð12Þ

for all v 2 ðV s
h Þ

2
, q 2 V f

h and g 2 Tn.
5. Full discretization of the equations

5.1. Approximation of the interior terms

Under the condition that qs and qf are constant, the integrals involved in the sesquilinear forms Aðu; vÞ,
aðp; qÞ and Dðv; qÞ may be computed exactly for discrete variables u, v, p and q.

We can associate to any continuous function g : R ! C the continuous and piecewise linear function

IhRðgÞ : R ! C uniquely determined by the conditions: IhRgðaÞ ¼ gðaÞ for all vertex a 2 sh that belongs to R.
We assume that f is continuous in Xs and approximate LðvÞ for all v 2 V s

h by

LhðvÞ :¼
X
T2ssh

measureðT Þ
3

X3
i¼1

ðf � vÞðaTi Þ �
Z
R
v � n IhRðwÞ ds;

where aTi are the vertices of triangle T . We also set

‘ðqÞ ’ ‘hðqÞ :¼
1

qfx2

Z
R
IhR

ow
on

� �
q ds

for all q 2 V f
h .
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5.2. Approximation of c(�; �)

For any continuous and 2p-periodic function g we consider the composite trapezoidal rule

QnðgÞ :¼
p
n

X2n�1

i¼0

g
ip
n

� �
associated to the uniform partition of ½0; 2p� into 2n grid points.

We proceed as in [6] and obtain a quadrature formula for the improper integral

ðK0gÞðtÞ :¼ � 1

2p

Z 2p

0

log
4

e
sin2 t � s

2

� �
gðsÞ ds ð13Þ

by replacing the function gðsÞ by its trigonometric interpolation polynomial

ðPngÞðsÞ :¼
X2n�1

j¼0

g
jp
n

� �
LjðsÞ;

where the Lagrange basis is given by

LjðsÞ :¼
1

2n
1

 
þ 2

Xn�1

k¼1

cos k s
�

� jp
n

�
þ cos n s

�
� jp

n

�!
8j ¼ 0; . . . ; 2n� 1:

We then obtain

ðK0gÞðtÞ ’ ~QngðtÞ :¼
X2n�1

j¼0

RðnÞ
j ðtÞg jp

n

� �
;

where, for j ¼ 0; . . . ; 2n� 1, the weights

RðnÞ
j ðtÞ ¼ 1

2n
þ 1

n

Xn�1

m¼1

1

m
cosm t

�
� jp

n

�
þ 1

2n2
cos n t

�
� jp

n

�
are deduced by evaluating explicitly the integrals ðK0LjÞðtÞ; cf. [6].

Using the splitting

V ðt; sÞ ¼ � 1

2p
V1ðt; sÞ log

4

e
sin2 t � s

2

� �
þ V2ðt; sÞ; ð14Þ

of the single layer acoustic potential kernel, where V1ðt; sÞ :¼ 1
2
J0ðkjxðtÞ � xðsÞjÞ and J0 is the Bessel function

of order zero, we obtain

qfx
2cðn; gÞ ¼

Z 2p

0

K0ðV1ðt; �Þnð�ÞÞðtÞgðtÞ dt þ
Z 2p

0

Z 2p

0

V2ðt; sÞnðsÞ ds
� �

gðtÞ dt: ð15Þ

Hereafter, taking into account that V1 and V2 are in C1
2p with respect to each variable, the first term of the

right-hand side in (15) may be approximated by using the quadrature rule ~Qn for the internal integral and Qn

for the external one. The two-dimensional quadrature rule derived from Qn is applied to the second term. In
other words, we are introducing an approximation of the sesquilinear form cð�; �Þ on Tn � Tn given by

qfx
2cnðn; gÞ :¼ Qn½~Qn½V1ðt; �Þnð�Þ�gðtÞ� þ Qn½Qn½V2ðt; �Þnð�Þ�gðtÞ�:
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Notice that we may equivalently write

cnðn; gÞ ¼
1

qfx2

X2n�1

i¼0

X2n�1

j¼0

Cijn
jp
n

� � !
g

ip
n

� �

with

Cij :¼
p
n
RðnÞ
j

ip
n

� �
V1

ip
n
;
jp
n

� �
þ p2

n2
V2

ip
n
;
jp
n

� �
:

5.3. Approximation of b(�; �)

We point out that the kernel Kð�; �Þ associated to the sesquilinear form bð�; �Þ is continuous but not

differentiable, therefore, it is necessary to split it, as we did for V ð�; �Þ in (14), before using any quadrature

rule. Here again, we follow [6] and write

Kðt; sÞ ¼ � 1

2p
K1ðt; sÞ log

4

e
sin2 t � s

2

� �
þ K2ðt; sÞ ð16Þ

with

K1ðt; sÞ :¼ � k
2
J1ðkjxðtÞ � xðsÞjÞ x

0
2ðsÞðx1ðtÞ � x1ðsÞÞ � x01ðsÞðx2ðtÞ � x2ðsÞÞ

jxðtÞ � xðsÞj ;

and J1 being the Bessel function of order one. It turns out that K1 and K2 belong to C1
2p in each variable.

We introduce the composite trapezoidal rule

QN ðgÞ :¼
p
N

X2N�1

i¼0

g
ip
N

� �
associated to the uniform partition of ½0; 2p� into 2N grid points. Given q 2 V f

h and g 2 Tn, our strategy

consists in approximating

x2qf bðchq; gÞ ¼
1

2

Z 2p

0

chqðtÞgðtÞ dt �
Z 2p

0

K0ðK1ð�; sÞgð�ÞÞðsÞchqðsÞ ds

�
Z 2p

0

Z 2p

0

K2ðt; sÞchqðsÞ ds
� �

gðtÞ dt

by employing Qn, ~Qn and QN as follows:

x2qf bh;nðchq; gÞ :¼
1

2

Z 2p

0

chqðtÞgðtÞ dt � QN ½~Qn½K1ð�; sÞgð�Þ�chqðsÞ� � QN ½Qn½K2ð�; sÞgð�Þ�chqðsÞ�:

In other words,

bh;nðchq; gÞ ¼
1

x2qf

X2N�1

j¼0

X2n�1

i¼0

Bijg
ip
n

� � !
q

jp
N

� �
;
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where

Bij :¼
1

2

Z 2p

0

‘jðtÞLiðtÞ dt �
p
N
RðnÞ
i

jp
N

� �
K1

ip
n
;
jp
N

� �
þ p2

nN
K2

ip
n
;
jp
N

� �
and f‘jðtÞ; j ¼ 0; . . . ; 2N � 1g is the nodal basis of Th, i.e., the 2p-periodic, continuous and piecewise linear

functions that satisfy ‘jðipNÞ ¼ dij for all 06 i; j6 2N � 1.

5.4. Approximation of c((�)0;(�)0)

Let p and q be two given functions in V f
h . It is straightforward to show that

x2qf cððchpÞ
0
; ðchqÞ

0Þ ¼ N 2

p2

X2N�1

i;j¼0

ðbi;j � biþ1;j � bi;jþ1 þ biþ1;jþ1Þp
jp
N

� �
q

ip
N

� �
;

where

bi;j :¼
Z tiþ1

ti

Z tjþ1

tj

V ðt; sÞ ds dt

with ti ¼ ip
N , i ¼ 0; . . . ; 2N � 1.

Before defining quadrature rules to approximate the integrals bi;j we have to introduce a new decom-

position of the singular kernel V ðt; sÞ that is more convenient for our purpose. Namely, we set

V ðt; sÞ :¼ V1ðt; sÞ logðt � sÞ2 þ F ðt; sÞ

with

F ðt; sÞ :¼ V1ðt; sÞ log
4
e sin

t�s
2

t � s

� �2

þ V2ðt; sÞ:

It results that F is C1 in the domain O :¼ fðt; sÞ; jt � sj < 2pg. Numerical quadratures must then be

handled with care in order to avoid the neighborhood of the singular points situated on the lines

fðt; sÞ; jt � sj ¼ 2pg. In fact, it suffices to compute the approximations ~bi;j of bi;j for indices that satisfy

ji� jj6N and recover ~bi;j for i; j ¼ 0; . . . ; 2N � 1 by taking advantage of the 2p periodicity of V ð�; �Þ in both

variables. Hence, for 06 i6 2N � 1 and i� N 6 j6 iþ N � 1 we define

~bi;j :¼ V1ðtiþ1=2; tjþ1=2Þ
Z tiþ1

ti

Z tjþ1

tj

logðt � sÞ2 ds dt þ p2

N 2
F ðtiþ1=2; tjþ1=2Þ;

where tiþ1=2 :¼ ðiþ 1
2
ÞpN. The integral appearing in the definition of ~bi;j is computed exactly. We also point

out that we used the two-dimensional midpoint formulaZ tiþ1

ti

Z tjþ1

tj

F ðt; sÞ ds dt ’ p2

N 2
F ðtiþ1=2; tjþ1=2Þ:

It follows that our approximation of cðð�Þ0; ð�Þ0Þ on Th � Th is given by

chððchpÞ
0
; ðchqÞ

0Þ :¼ 1

x2qf

X2N�1

i¼0

XNþi�1

j¼�Nþi

Eijp
jp
N

� �
q

ip
N

� �
;
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where

Eij :¼
N 2

p2
ð~bi;j � ~biþ1;j � ~bi;jþ1 þ ~biþ1;jþ1Þ:
5.5. Approximation of d(�; �)

For p and q in V f
h , we have the decomposition

x2qf dðchp; chqÞ ¼
Z 2p

0

Z 2p

0

~V1ðt; sÞ logðt � sÞ2chpchq ds dt þ
Z 2p

0

Z 2p

0

~F ðt; sÞchpchq ds dt;

where ~V1ðt; sÞ ¼ x0ðtÞ � x0ðsÞV1ðt; sÞ and ~F ðt; sÞ ¼ x0ðtÞ � x0ðsÞF ðt; sÞ.
We propose an approximation dhðu; vÞ of dðu; vÞ defined by

dhðchp; chqÞ :¼
1

x2qf

X2N�1

i¼0

XNþi�1

j¼�Nþi

Dijp
jp
N

� �
q

ip
N

� �
with

Dij :¼ ~V1
ip
N
;
jp
N

� �Z tiþ1

ti�1

Z tiþ1

ti�1

logðt � sÞ2‘jðsÞ‘iðtÞ ds dt þ
p2

N 2
~F

ip
N
;
jp
N

� �
:

The first term of the right-hand side of the last equation is computed exactly. We also notice that we

approximated the integral of ~F ðt; sÞchpðsÞchqðtÞ by using the bidimensional trapezoidal rule.

We are now in a position to propose a completely discrete version of the Galerkin scheme (12):

find u�h 2 ðV s
h Þ

2
; p�h 2 V f

h and n�n 2 Tn such that

Aðu�h; vÞ þ Dðv; p�hÞ ¼ LhðvÞ;
aðp�h; qÞ þ Dðu�h; qÞ � bh;nðchq; n�nÞ þ chððchp�hÞ

0
; ðchqÞ

0Þ � k2dhðchp�h; chqÞ ¼ ‘hðqÞ;
� bh;nðchp�h; gÞ � cnðn�n; gÞ ¼ 0

ð17Þ

for all v 2 ðV s
h Þ

2
, q 2 V f

h and g 2 Tn.

5.6. Matrix form of the fully discrete problem

Let us denote by fus
i ; i ¼ 1; . . . ;Ms

hg and fuf
i ; i ¼ 1; . . . ;Mf

h g the nodal basis of V s
h and V f

h , respectively.

We also consider the canonical basis fe1 :¼ ð1; 0Þ; e2 :¼ ð0; 1Þg of R2.

For 16 a; b6 2 we denote by Aab the Ms
h �Ms

h matrix whose entries are given by

Aab
ij :¼ Aðus

iea;u
s
jebÞ:

Let us also introduce the Ms
h �Mf

h matrix Da (a ¼ 1; 2)

Da
ij :¼ Dðus

iea;u
f
j Þ:

If we set

u�h ¼
X2
a¼1

XMs
h

i¼1

u
ðaÞ
i us

iea; p�h ¼
XMf

h

i¼1

piu
f
i ; n�n ¼

X2n�1

i¼0

niLi
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and use the superscript ð�ÞT to denote transposition of matrices, then, the matricial interpretation of (17)

takes the form

A D 0

DT R K

0 KT �C

0@ 1A u

p

n

0@ 1A ¼
F

G

0

0@ 1A; ð18Þ

where

A :¼ A11 A12

A21 A22

� �
; D :¼ D1

D2

� �
and

Rij :¼ aðuf
i ;u

f
j Þ þ chððchuf

i Þ
0
; ðchuf

j Þ
0Þ � k2dhðchuf

i ; chu
f
j Þ;
Kik :¼ �bh;nðchuf
i ; LkÞ and Ck‘ :¼ cnðLj; L‘Þ:

The right-hand side of (18) is given by

F :¼ F1

F2

� �
with Fa

i :¼ Lhðus
ieaÞ ða ¼ 1; 2Þ ði ¼ 1; . . . ;Ms

hÞ

and

Gi :¼ ‘hðuf
i Þ ði ¼ 1; . . . ;Mf

h Þ:

The matrix in (18) is complex symmetric but it is badly structured since A, D and the part of R corre-

sponding to the sesquilinear form að�; �Þ are sparse matrices while C and K are full. The global matrix is too

large to be stored and handled. In the next section we will propose an efficient iterative method to solve (18).
6. Numerical results

We test our numerical method on a problem (1) whose exact solution is known explicitly. We take
Xs ¼ ð�0:2; 0:2Þ � ð�0:4; 0:4Þ and define C to be the ellipse centered at the origin with minor and major

semiaxes equal to 0.4 and 0.6, respectively. We also choose qs ¼ qf ¼ c ¼ k ¼ l ¼ 1. Let us denote by K0,

K1 and K2 the modified Bessel functions of the second kind and order 0, 1 and 2, respectively. The function

given by

ueðxÞ ¼
1

2p

wðxÞ � ðx1�0:3Þ2
r2
1

vðxÞ
� ðx1�0:3Þx2

r2
1

vðxÞ

0@ 1A r1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � 0:3Þ2 þ x22

q� �
with

wðxÞ :¼ K0ðıxr1Þ þ
1

ıxr1
K1ðıxr1Þ
�

� 1ffiffiffi
3

p K1

ıxr1ffiffiffi
3

p
� ��

and

vðxÞ :¼ K2ðıxr1Þ �
1

3
K2

ıxr1ffiffiffi
3

p
� �

is a solution of the elastodynamic equation in Xs when f ¼ 0.
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On the other hand, the scalar function

peðxÞ ¼ H ð1Þ
0 ðxrÞ ðr ¼ jxjÞ

solves the Helmholtz equation in Xf and satisfies the radiation conditions (2). Thus, ðue; peÞ is solution of (1)

if we impose on R the transmission conditions:

rðuÞnþ pn ¼ rðueÞnþ pen;

x2u � n� op
on

¼ x2ue � n�
ope
on

:

In Table 1, we take x ¼ 1 and h ¼ 2p=128 while x ¼ 5 and h ¼ 2p=128 in Table 2. In both cases we de-
crease the spectral parameter n until we obtain the smallest value that preserves the order of accuracy.

We can see that the number of degrees of freedom is drastically reduced. This justifies the following

strategy used to solve the linear systems of equations. We eliminate the boundary variable from (18) to

obtain the reduced system

A D

DT Rk þ KC�1KT

� �
u

p

� �
¼ F

G

� �
: ð19Þ

The system of equations (19) is then solved by a preconditioned GMRES method. We use the block di-

agonal matrix
Table 1

Convergence history and number of iterations of the method for different values of the parameter n when x ¼ 1 and h ¼ 2p=128

2n ku� u�hk1;Xs
kp � p�hk1;X�

f

64 3.29� 10�3 4.27� 10�3

32 3.29� 10�3 3.29� 10�3

16 3.29� 10�3 3.24� 10�3

8 3.29� 10�3 8.09� 10�3

Table 2

Convergence history and number of iterations of the method for different values of the parameter n when x ¼ 5 and h ¼ 2p=128

2n ku� u�hk1;Xs
kp � p�hk1;X�

f

64 4.23� 10�3 9.97� 10�3

32 4.23� 10�3 9.91� 10�3

16 4.23� 10�3 9.90� 10�3

8 7.88� 10�3 4.96� 10�2

Table 3

Convergence history and number of iterations of the method for different values of the parameter h when x ¼ 5 and n ¼ 8

h ku� u�hk1;Xs
kp � p�hk1;Xs

Iterations

2p=32 2.62� 10�2 7.58� 10�2 22

2p=64 8.76� 10�3 2.89� 10�2 22

2p=128 4.23� 10�3 9.90� 10�3 21

2p=256 1.9� 10�3 5.2� 10�3 21
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Fig. 2. The arithmetic mean of the H 1-errors in displacement and pressure versus h.
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Fig. 3. Real (above) and imaginary (below) parts of the variable n. The analytical solution is represented by a line and the computed

solution (with h ¼ 2p=128, x ¼ 5 and 2n ¼ 16) by plus signs.
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A0 0

0 R0

� �
as a preconditioner, where A0 and R0 are the matrices associated to the sesquilinear forms

R
Xs
rðuÞ : eðvÞ dx

and
R
X�
f
rp � rq dx, respectively. We use a version of GMRES without restarts. We take as an initial guess

an identically vanishing function in both Xs and X�
f . Iterations are continued until krkþ1k2=krkk2 < 10�6,

where rk is the kth residual.
Each iteration of the GMRES method entails the solution of a linear system with a full but small matrix

C and the solution of two other linear systems with sparse matrices A0 and R0. This can be performed by

any of the numerous strategies existing in the literature for these standard stiffness matrices. Table 3 shows

the number of iterations against h with n ¼ 8 and x ¼ 5. The numerical results suggest that the method has

a number of iterations bounded independently of the critical parameter h. Fig. 2 depicts the results of Table

3 and shows that, as expected, the error grows linearly with respect to the mesh parameter. Finally, the

accuracy of our method on the coupling boundary is illustrated by Fig. 3 with the data h ¼ 2p=128, x ¼ 5

and 2n ¼ 16. In each graphic we compare the real and imaginary parts of the 2p-periodic unknown on the
boundary to its discrete counterpart. The exact and approximated solutions are superposed in each graphic.

The analytical solution is represented by the continuous line.
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